ANÁLISE DO EFEITO DE BACKGROUND NA ESTIMATIVA DA POTÊNCIA E DA ENERGIA RADIATIVA DO FOGO

Guilherme Augusto Verola Mataveli, Gabriel Pereira, Elisabete Caria Moraes, Bruno Silva Oliveira

Resumen


Atualmente, o sensoriamento remoto orbital é a principal fonte de dados para o estudo das queimadas e para estimar a quantidade de biomassa queimada. Dentre os métodos para estimar a biomassa queimada, o método mais efetivo é derivado da Potência Radiativa do Fogo (FRP) e da Energia Radiativa do Fogo (FRE), sobre a premissa de que a energia emitida como radiação eletromagnética durante a combustão é diretamente relacionada com a biomassa queimada. Contudo, devem ser compreendidos os fatores que introduzem erros na FRP e na FRE, como o background, e que prejudicam a acurácia da estimativa da biomassa queimada a partir da FRP e da FRE. O presente trabalho avalia a influência do background na estimativa da FRP e da FRE a partir de um experimento de combustão em pequena escala, sendo que os resultados encontrados mostram que o mesmo aumentou em média 13% as estimativas obtidas.

Palabras clave


Queimadas; Potência Radiativa do Fogo; Background; Experimento de Combustão em Pequena Escala

Texto completo:

PDF (Português (Portugal))

Referencias


Andela, N.; Van der Werf, G. R.; Kaiser, J. W.; Van Leeuwen, T. T.; Wooster, M. J.; Lehmann, C. E. R. (2016): “Biomass burning fuel consumption dynamics in the (sub)tropics assessed from satellite”, Biogeosciences Discussions, 13, 12, pp. 1-30.

Aguiar, D. A.; Rudorff, B. F. T.; Silva, W. F.; Adami, M.; Mello, M. P. (2011): “Remote sensing images in support of environmental protocol: monitoring the sugarcane harvest in São Paulo, Brazil”, Remote Sensing, 3, 12, pp. 2682-2703.

Andreae, M. O.; Merlet, P. (2001): “Emission of trace gases and aerosols from biomass burning”, Global Biogeochemical Cycles, 15, 4, pp. 955-966.

Archibald, S.; Staver, A. C.; Levin, S. A. (2011): “Evolution of human-driven fire regimes in Africa”, Proceedings of the National Academy of Sciences of the United States of America, 109, pp. 847-852.

Beuchlé, R.; Grecchi, R. C.; Shimabukuro, Y. E.; Seliger, R.; Eva, H. D.; Sano, E. E.; Achard, F. (2015): “Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach”, Applied Geography, 58, pp. 116-127.

Bowman, D. M.; Balch, J. K.; Artaxo, P.; Bond, W. J.; Carlson, J. M.; Cochrane, M. A.; D'Antonio, C. M.; Defries, R. S.; Doyle, J. C.; Harrison, S. P., et al. (2009): “Fire in the earth system”, Science, 324, pp. 481-484.

Cardozo, F. S.; Pereira, G.; Shimabukuro, Y. E.; Moraes, E. C. (2012): “Validation of MODIS MCD45A1 product to identify burned areas in Acre state - Amazon forest”, Proceedings of IEEE International Geoscience and Remote Sensing Symposium, pp. 6741-6744.

Cardozo, F. S.; Pereira, G.; Mataveli, G. A. V.; Shimabukuro, Y. E. (2015): “Avaliação dos modelos de emissão 3BEM e 3BEM_FRP no estado de Rondônia”, Revista Brasileira de Cartografia, 67, 5, pp. 1247-1264.

Coutinho, L. M. (1990): “Fire in the ecology of the Brazilian cerrado”, In Goldammer, J.G. (Springer-Velarg): New York, pp.82-105.

De Araújo, F. M.; Ferreira, L. G.; Arantes, A. E. (2012): “Distribution patterns of burned areas in the Brazilian biomes: An analysis based on satellite data for the 2002–2010 period”, Remote Sensing, 4, pp. 1929-1946.

De Araújo, F. M.; Ferreira, L. (2015): “Satellite-based automated burned area detection: A performance assessment of the MODIS MCD45A in the Brazilian savanna”, International Journal of Applied Earth Observation and Geoinformation, 36, pp. 94-102.

Dozier, J. (1981): “A method for satellite identification of surface temperature fields of subpixel resolution”, Remote Sensing of Environment, 11, pp. 221-229.

Eckman, T. C.; Roberts, D. A.; Still, C. J. (2008): “Using multiple endmember spectral mixture analysis to retrieve subpixel fire properties from MODIS”, Remote Sensing of Environment, 112, 10, pp. 3773-3783.

Eckman, T. C.; Still, C. J.; Roberts, D. A.; Michaelsen, J. C. (2010): “Variations in subpixel fire properties with season and land cover in Southern Africa”, Earth Interactions, 4, 6, pp. 1-29.

Fearnside, P. M. (2000): “Global warming and tropical land-use change: Greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation”, Climate Change, 46, pp. 115-158.

Flir. (2016): “Manual da FLIR: Modelo A310”. Disponível em: http://www.flir.com/BR/. Acesso em 20 ago. 2016

França, D. A.; Longo, K. M.; Neto, T. G. S.; Santos. J. C.; Freitas, S. R.; Rudorff, B. F. T.; Cortez, E. V.; Anselmo, E; Carvalho junior, J. A. (2012): “Pre-harvest sugarcane burning: determination of emission factors through laboratory measurements”, Atmosphere, 3, 1, pp. 164-180.

Freeborn, P. H.; Wooster, M.J.; Hao, W.M.; Ryan, C.A.; Nordgren, B.L.; Baker, S.P.; Ichoku, C. (2008): “Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires”, Journal of Geophysical Research, 113, 01, pp. 1-17.

Freeborn, P. H.; Wooster, M. J.; Roy, D. P.; Cochrane, M. A. (2014): “Quantification of MODIS fire radiative power (FRP) measurement uncertainty for use in satellite-based active fire characterization and biomass burning estimation”, Geophysical Research Letters, 41, pp. 1988-1994.

Freitas, S. R.; Longo, K. M.; Dias, M. A. F. S; Chatfield, R.; Dias, P. L. S.; Artaxo, P.; Andreae, M.; Grell, G. A.; Rodrigues, L.; Fazenda, A.; Panetta, J. (2007): “The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). Part 1: Model description and evaluation”, Atmospheric Chemistry and Physics Discussion, 7, 1, pp. 8525-8569.

Giglio, L.; Kendall, J.; Mack, R. (2003): “A multi-year active fire dataset for the tropics derived from the TRMM VIRS”, International Journal of Remote Sensing, 24, 22, pp. 4505-4525.

Giglio, L.; Van der Werf, G. R.; Randerson, J. T.; Collatz, G. J.; Kasibhatla, P.S. (2006): “Global estimation of burned area using MODIS active fire observations”, Atmospheric Chemistry and Physics, 6, pp. 957−974.

Giglio, L.; Schroeder, W.; Justice, C. O. (2016): “The collection 6 MODIS active fire detection algorithm and fire products”. Remote Sensing of Environment, 178, pp. 31-41.

Hantson, S.; Padilla, M.; Corti, D.; Chuvieco, E. (2013): “Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence”, Remote Sensing of Environment, 131, 1, pp. 152-159.

Huang, S.; Liu, H.; Dahal, D.; Jin, S.; Li, S.; Liu, S. (2015): “Spatial variations in immediate greenhouse gases and aerosol emissions and resulting radiative forcing from wildfires in interior Alaska”, Theoretical and Applied Climatology, 123, pp. 581-592

Ichoku, C.; Giglio, L.; Wooster, M.; Remer, L. (2008): “Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy”, Remote Sensing of Environment, 112, 6, pp. 2950-2962.

Ichoku, C.; Kahn, R.; Chin, M. (2012): “Satellite contributions to the quantitative characterization of biomass burning for climate modeling”, Atmospheric Research, 111, pp. 1-28.

Kaiser, J. W.; Heil, A.; Andreae, M. O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette. J. J.; Razinger, M.; Schultz, M. G.; Suttie, M.; Van der Werf, G. R. (2012): “Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power”, Biogeosciences, 9, 1, pp. 527-554.

Kaufman, Y. J.; Remer, L.; Ottmar, R.; Ward, D.; Rong-R, L.; Kleidman, R.; Fraser, R.; Flynn, L.; Mcdougal, D.; Shelton, G. (1996): “Relationship between remotely sensed fire intensity and rate of emission of smoke: SCAR-C experiment”, In: Levine, J. (MIT Press): Maryland, pp. 685-696.

Lauk, C.; Erb, K. H. (2009): “Biomass consumed in anthropogenic vegetation fires: Global patterns and processes”, Ecological Economics, 69, 2, pp. 301-309.

Paugam, R.; Wooster, M. J.; Roberts, G. (2013): “Use of thermal image data for airborne mapping of fire radiative power and energy and flame front rate of spread”, IEEE Transactions on Geoscience and Remote Sensing, 51, 6, pp. 3385-3399.

Pereira, G.; Freitas, S. R.; Moraes, E. C.; Ferreira, N. J.; Shimabukuro, Y. E.; Rao, V. B.; Longo, K. M. Estimating trace gas and aerosol emissions over South America: relationship between fire radiative energy released and aerosol optical depth observations. Atmospheric Environment, v.43, n.40, p. 6388-6397, 2009.

Pereira, G.; Cardozo, F. S.; Silva, F. B.; Moraes, E. C.; Ferreira, N. J.; Freitas, S. R.; Shimabukuro, Y. E.; Breunig, F. M.; Viana, D. R. (2012): “Determinação e modelagem da taxa de consumo de biomassa queimada”, Revista Brasileira de Meteorologia, 27, 1, pp. 13-22.

Pereira, G.; Siqueira, R.; Rosário, N. E.; Longo, K. L.; Freitas, S. R.; Cardozo, F. S.; Kaiser, J. W.; Wooster, M. J. (2016): “Assessment of fire emissions inventories during the south american biomass burning analysis (SAMBBA) experiment”, Atmospheric Chemistry and Physics Discussion, pp. 1-23.

Peterson, D.; Wang, J.; Ichoku, C.; Hyer, E.; Ambrosia, V. (2013): “A sub-pixel-based calculation of fire radiative power from MODIS observations: 1 Algorithm development and initial assessment”, Remote Sensing of Environment, 129, pp. 262-279.

Ramos Neto, M. B.; Pivello, V. R. (2000): “Lightning fires in a Brazilian savanna national park: Rethinking management strategies”, Environmental Management, 26, pp. 675-684.

Riggan, P.; Tissell, R.; Lockwood, R.; Brass, J.; Pereira, J.; Miranda, H.; Campos, T.; Higgins, R. (2004): “Remote measurement of energy and carbon flux from wild-fires in Brazil”, Ecological Application, 14, 3, pp. 855–872.

Roberts, G.; Wooster, M. J.; Perry, G. L. W.; Drake, N.; Rebelo, L. M.; Dipotso, F. (2005): “Retrieval of biomass combustion rates and totals from fire radiative power observations: Application to southern Africa using geostationary SEVIRI imagery”, Journal of Geophysical Research, 110, D21, pp. 1-20.

Schroeder, W., Csiszar, I., Giglio, L., Schmidt, C. C. (2010): “On the use of fire radiative power, area, and temperature estimates to characterize biomass burning via moderate to coarse spatial resolution remote sensing data in the Brazilian Amazon”, Journal of Geophysical Research, 115, D21121, pp. 1-10.

Seiler, W.; Crutzen, P.J. (1980): “Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning”, Climate Change, 2, 3, pp. 207–248.

Shi, Y.; Matsunaga, T.; Saito, M.; Yamaguchi, Y.; Chen, X. (2015): “Comparison of global inventories of CO2 emissions from biomass burning during 2002-2011 derived from multiple satellite products”, Environmental Pollution, 206, pp. 479-487.

Shimabukuro, Y. E.; Pereira, G.; Cardozo, F. S.; Stockler, R.; Freitas, S.R.; Coura, S. M. C. (2013): “Biomass burning emission estimation in amazon tropical forest”. In Alcaraz-Segura (Coord.), D.; Di Bella, C. M.; Straschnoy, J. V: Earth observation of ecosystem services. Boca Raton, United States of America, CRC Press, pp. 125-148.

Shvetsov, E. G.; Ponomarev, E. I. (2015): “Estimating the influence of external environmental factors on fire radiative power using satellite imagery”, Contemporany Problems of Ecology, 8, pp. 337-343.

Smith, A. M. S.; Tinkham, W. T.; Roy, D. P.; Boschetti, L.; Kremens, R. L.; Kumar, S. S.; Sparks A. M.; Falkowski, M. J. (2013): “Quantification of fuel moisture effects on biomass consumed derived from fire radiative energy retrievals”, Geophysical Research Letters, 40, pp. 6298-6302.

Surawski, N. C.; Sullivan, A. L.; Meyer, C. P.; Roxburgh, S. H.; Polglase, P, J. (2015): “Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion”, Atmospheric Chemistry and Physics, 15, pp. 5259-5273.

Van der Werf, G. R.; Randerson, J. T.; Giglio, L.; Collatz, G. J.; Kasibhatla, P. S.; Arellano, A. F. (2006): “Interannual variability in global biomass burning emissions from 1997 to 2004”, Atmospheric Chemistry and Physics, 6, 1, pp. 3423–3441.

Veraverbeke, S.; Stavros, E. N.; Hook, S. J. (2014): “Assessing fire severity using imaging spectroscopy data from the airborne visible/infrared imaging spectrometer (AVIRIS) and comparison with multispectral capabilities”, asz cv, 154, pp. 153-163.

Vermote, E.; Ellicott, E.; Dubovik, O.; Lapionok, T.; Chin, M.; Giglio, L.; Roberts, G.J. (2009): “An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power”, Journal of Geophysical Research, 114, 18, pp. 1984-2012.

Wooster, M. J. (2002): “Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires”, Geophysical Research Letters, 29, 21, pp. 231-234.

Wooster, M. J.; Zhukov, B.; Oertel, D. (2003): “Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products”, Remote Sensing of Environment, 86, 1, pp. 83-107.

Wooster, M. J.; Roberts, G.; Perry, G.; Kaufman, Y. J. (2005): “Retrieval of biomass combustion rates and totals from fire radiative power observations: calibration relationships between biomass consumption and fire radiative energy release”, Journal of Geophysical Research, 110, 24, pp. 83-107.

Wooster, M. J.; Freeborn, P. H.; Archibald, S.; Oppenheimer, C.; Roberts, G. J.; Smith, T. E. L.; Govender, N.; Burton, M.; Palumbo, I. (2011): “Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: head fire, backfire and residual smouldering combustion in African savannahs”, Atmospheric Chemistry and Physics, 11, 22, pp. 11591-11615.

Xu, W.; Wooster, M. J.; Roberts, G.; Freeborn, P. (2010): “New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America”, Remote Sensing of Environment, 114, 9, pp. 1876-1895.




DOI: http://dx.doi.org/10.21138/GF.443

Licencia Creative Commons

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.


GeoFocus es la revista del Grupo de Tecnologías de la Información Geográfica de la Asociación de Geógrafos Españoles. Recibe soporte institucional y técnico de RedIRIS (Red Española de I+D soportada por el Gobierno de España), de la FECYT (Fundación Española para la Ciencia y la Tecnología) y Grumets (Grupo de Investigación Métodos y Aplicaciones en Teledetección y Sistemas de Información Geográfica).