DESARROLLO DE UN ALGORITMO GLOBAL DE ÁREA QUEMADA PARA IMÁGENES DEL SENSOR ENVISAT-MERIS

Itziar Alonso Cañas, Emilio Chuvieco Salinero

Resumen


En este artículo se presentan los avances recientes en el desarrollo de un algoritmo para cartografiar área quemada a partir de imágenes MERIS. El trabajo se ha desarrollado en el ámbito del programa de cambio climático de la ESA. El análisis de resultados de la primera versión del algoritmo condujo a implementar una serie de tests para mejorar la configuración. Se probaron estos tests en 4 zonas: Australia, Canadá, California y Península Ibérica, cubriendo un área total de 2.500.000 km2. Los resultados obtenidos para los distintos tests se compararon con los perímetros de área quemada generados por los gestores de incendios en cada zona, identificando mejoras sustanciales respecto a la primera versión del algoritmo. Para el año 2008, se obtuvo una fiabilidad global de 0,982 (frente al 0,975 de la versión anterior). Esta nueva versión del algoritmo se utilizará para procesar la serie completa de datos MERIS (2002-2012).

Palabras clave


área quemada, MERIS, incendios, quemada de biomasa

Texto completo:

PDF

Referencias


Alonso-Canas I. & Chuvieco E. (2015): Global burned area mapping from ENVISAT-MERIS and MODIS active fire data, Remote Sensing of Environment,163, 140-152.

Bastarrika, A., Chuvieco, E., & Martín, M.P. (2011): Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: balancing omission and commission errors. Remote Sensing of Environment, 115, 1003-1012.

Bowman, D.M.J.S., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A., D’Antonio, C.M., DeFries, R.S., Doyle, J.C., Harrison, S.P., Johnston, F.H., Keeley, J.E., Krawchuk, M.A., Kull, C.A., Marston, J.B., Moritz, M.A., Prentice, I.C., Roos, C., Scott, A., Swetnam, T., Van der Werf, G., & Pyne, S.J. (2009): Fire in the Earth system., Science, 324, 481-484.

Brassel, K.E., & Reif, D. (1979): A procedure to generate Thiessen polygons. Geographical Analysis, 11, 289-303.

Chuvieco, E., Opazo, S., Sione, W., Del Valle, H., Anaya, J., Di Bella, C., Cruz, I., Manzo, L., López, G., Mari, N., González-Alonso, F., Morelli, F., Setzer, A., Csiszar, I., Kanpandegi, J.A., Bastarrika, A., &

Libonati, R. (2008): Global Burned Land Estimation in Latin America using MODIS Composite Data. Ecological Applications, 18, 64-79.

Chang, D., & Song, Y. (2009): Comparison of L3JRC and MODIS global burned area products from 2000 to 2007. Journal of Geophysical Research, 114, 10.1029/2008JD11361.

Daniau A.L. et al (2012): Predictability of biomass burning in response to climate changes. Global Biogeochemical Cycles, 26.

Eva, H., & Lambin, E.F. (1998): Burnt area mapping in Central Africa using ATSR data. International Journal of Remote Sensing, 19, 3473-3497.

Fraser, R.H., Li, Z., & Cihlar, J. (2000): Hotspot and NDVI Differencing Synergy (HANDS): a new technique for burned area mapping over boreal forest. Remote Sensing of Environment, 74, 362-376.

Giglio, L., Loboda, T., Roy, D.P., Quayle, B., & Justice, C.O. (2009): An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sensing of Environment, 113, 408-420.

Giglio, L., J. Descloitres, C. O. Justice & Y. J. Kaufman (2003): An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment 87: 273-282.

González-Alonso, F., & Merino-de-Miguel, S. (2009a): Integration of AWiFS and MODIS active fire data for burn mapping at regional level using the Burned Area Synergic Algorithm (BASA). International Journal of Wildland Fire, 18, 404-414.

González-Alonso, F., Salgado, V., Calle, V., Casanova, J.L., Sanz, J., de la Fuente, D., Goldammer, J.G., Li, Z., Qin, X., Zhang, X., Deng, G., Liu, Q., Li, G., Cai, H., & Huang, Z. (2009b): Forest burn in China by means of MERIS and MODIS images. Dragon 2 Symposium, June 2009, Barcelona.

Hantson, S., Padilla, M., Corti, D., & Chuvieco, E. (2013): Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sensing of Environment, 131, 152-159.

Hollmann, R., Merchant, C.J., Saunders, R.W., Downy, C., Buchwitz, M., Cazenave, A., Chuvieco, E., Defourny, P., Leeuw, G.d., Forsberg, R., Holzer-Popp, T., & Paul, F. (2013): The ESA Climate Change Initiative: satellite data records for essential climate variables. Bulletin of the American Meteorological Society, doi 10.1175/BAMS-D-11-00254.1

Kasischke, E.S., French, N.H.F., Harrell, P., Christensen, N.L., Ustin, S.L., & Barry, D. (1993): Monitoring of wildfires in Boreal Forests using large area AVHRR NDVI composite image data. Remote Sensing of Environment, 45, 61-71.

Kloster, S., Mahowald, N., Randerson, J., & Lawrence, P. (2012): The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences, 9, 509-525.

Krawchuk, M.A., Moritz, M.A., Parisien, M.-A., Van Dorn, J., & Hayhoe, K. (2009): Global Pyrogeography: the Current and Future Distribution of Wildfire. PLoS ONE, 4, e5102.

Libonati R, DaCamara C., Setzera A., Morellia F., de Jesusa S., Candido P., Melchiori A. ,Validation of the burned area “(V,W)” Modis algorithm in Brazil , Advances in forest fire research, 2014, http://dx.doi.org/10.14195/978-989-26-0884-6_197 Chapter 6 – Forest Management.

Mouillot, F., Schultz, M.G., Yue, C., Cadule, P., Tansey, K., Ciais, P., & Chuvieco, E. (2014): Ten years of global burned area products from spaceborne remote sensing - A review: Analysis of user needs and recommendations for future developments. International Journal of Applied Earth Observation and Geoinformation, 26, 64-79.

Oliva, P., Martin, P., & Chuvieco, E. (2011): Burned area mapping with MERIS post-fire image. International Journal of Remote Sensing, 32, 4175-4201.

Padilla, M., V. Stehman, S.V., Hantson, S., Oliva, P., Alonso-Canas, I., Bradley, A., Tansey, K., Mota, B., Pereira, J.M., Chuvieco, E. (2015): Comparing the Accuracies of Remote Sensing Global Burned Area Products using Stratified Random Sampling and Estimation. Remote Sensing of Environment, 160, 114-121.

Piccolini, I., & Arino, O. (2000): Towards a Global Burned Surface World Atlas. Earth Observation Quartely, 65, 14-18.

Pinty, B., & Verstraete, M.M. (1992): GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio, 101, 15-20.

Plummer, S., Arino, O., Ranera, F., Tansey, K., Chen, J., Dedieu, G.,

Eva, H., Piccolini, I., Leigh, R., & Borstlap, G. (2007): An update on the GlobCarbon initiative: multi-sensor estimation of global biophysical products for global terrestrial carbon studies. Envisat Symposium. Montreux, Switzerland: ESA SP-636.

Pu, R.L., Li, Z.Q., Gong, P., Csiszar, I., Fraser, R., Hao , W.-M., Kondragunta, S., & Weng, F. (2007): Development and analysis of a 12-year daily 1-km forest fire North America from NOAA/AVHRR data. Remote Sensing of Environment, 108, 198-208.

Randerson, J.T., Chen, Y., Werf, G., Rogers, B., & Morton, D. (2012): Global burned area and biomass burning emissions from small fires. Journal of Geophysical Research-Biogeosciences, 117, G04012, doi:10.1029/2012JG002128.

Roy, D., Jin, Y., Lewis, P., & Justice, C. (2005a): Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sensing of Environment, 97, 137-162.

Roy, D.P., Giglio, L., Kendall, J.D., & Justice, C.O. (1999): Multi-temporal active-fire based burn scar detection algorithm. International Journal of Remote Sensing, 20, 1031-1038.

Roy, D. P., & Landmann, T. (2005b): Characterizing the surface heterogeneity of fire effects using multi-temporal reflective wavelength data. International Journal of Remote Sensing, 26, 4197−4218.

Roy, D. y L. Boschetti (2009): Southern Africa validation of the MODIS, L3JRC and Globcarbon burned-area products. IEEE Transactions on Geoscience and Remote Sensing 47(4): 1032-1044.

Tansey, K., Grégoire, J.M., Defourny, P., Leigh, R., Peckel, J.F., Bogaert, E.V., & Bartholome, J.E. (2008): A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution. Geophysical Research Letters, 35, L01401, doi:10.1029/2007GL03156

Tansey, K., Grégoire, J.M., Stroppiana, D., Sousa, A., Silva, J., Pereira, J.M., Boschetti, L., Maggi, M., Brivio, P.A., Fraser, R., Flasse, S., Ershov, D., Binaghi, E., Graetz, D., & Peduzzi, P. (2004): Vegetation burning in the year 2000: Global burned area estimates from SPOT VEGETATION data. Journal of Geophysical Research - Atmospheres, 109, D14S03, doi:10.1029/2002JD003598, 2-22

Van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G., Mu, M., Kasibhatla, P.S., Morton, D.C., DeFries, R.S., Jin, Y., & van

Leeuwen, T.T. (2010): Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics, 10, 11707–11735.




Licencia Creative Commons

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.


GeoFocus es la revista del Grupo de Tecnologías de la Información Geográfica de la Asociación de Geógrafos Españoles. Recibe soporte institucional y técnico de RedIRIS (Red Española de I+D soportada por el Gobierno de España), de la FECYT (Fundación Española para la Ciencia y la Tecnología) y Grumets (Grupo de Investigación Métodos y Aplicaciones en Teledetección y Sistemas de Información Geográfica).